# Classification of lattice triangles by their first two widths 

Girtrude Hamm

University of Nottingham
WINGs, April 2023

## Lattice Polygons

A lattice polygon is the convex hull of finitely many points of $\mathbb{Z}^{2}$.


## Lattice Polygons

A lattice polygon is the convex hull of finitely many points of $\mathbb{Z}^{2}$.


We will classify polygons up to affine equivalence, that is, up to change of basis of $\mathbb{Z}^{2}$ and integral translation. For example

- shears
- reflections
- translations
are all affine maps.


## Lattice Polygons

A lattice polygon is the convex hull of finitely many points of $\mathbb{Z}^{2}$.


We will classify polygons up to affine equivalence, that is, up to change of basis of $\mathbb{Z}^{2}$ and integral translation. For example

- shears
- reflections
- translations
are all affine maps. Such maps preserve the area and lattice point structure of the polygons (how many lattice points in their interior/boundary etc) and are relevant to some applications.


## Width

For a lattice polygon $P$ and any normal vector $u \in\left(\mathbb{Z}^{2}\right)^{*} \cong \mathbb{Z}^{2}$ we say that the width of $P$ with respect to $u$ is

$$
\text { width }_{u}(P):=\max _{x \in P}\{u \cdot x\}-\min _{x \in P}\{u \cdot x\}
$$

The smallest width over all non-zero normal vectors $u$ is called the width of $P$ denoted width $(P)$.

(a) width $_{(1,1)}(P)=5$
(b) width $_{(1,0)}(P)=5$
(c) width $_{(0,1)}(P)=1$

Figure: Widths of $P=\operatorname{conv}((0,0),(5,0),(0,1))$ with respect to different normal vectors.

## Motivation

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [IVnS21].
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3 -dimensional lattice zonotopes of degree 2 [BJJ22].


## Motivation

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [ VVnS 21$]$. All but finitely many of these have width at most 2 .
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3 -dimensional lattice zonotopes of degree 2 [BJJ22].


## Motivation

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [ VVnS 21$]$. All but finitely many of these have width at most 2.
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
All but finitely many of these have width at most 2.
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3 -dimensional lattice zonotopes of degree 2 [BJJ22].


## Motivation

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [ V VnS 21$]$.
All but finitely many of these have width at most 2.
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
All but finitely many of these have width at most 2.
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3 -dimensional lattice zonotopes of degree 2 [BJJ22]. Apart from one exception all 3-dimensional lattice zonotopes of degree 2 have width 1.


## Multi-width

For a lattice polytope $P \subset \mathbb{R}^{d}$ we can choose linearly independent normal vectors $u_{1}$ and $u_{2}$ such that the tuple

$$
\left(\operatorname{width}_{u_{1}}(P), \text { width }_{u_{2}}(P)\right)
$$

is minimal with respect to lexicographic order. This tuple is called the multi-width of $P$ denoted mwidth $(P)$. We call the $i$-th entry of the multi-width the $i$-th width of $P$ denoted width ${ }^{i}(P)$.

(a)

(b)

(c)

Figure: The multi-width of a polygon gives the dimensions of the smallest parallelogram it is a subset of.

## Fact

A lattice polygon $P$ is affine equivalent to a subset of $\left[0\right.$, width $\left.^{1}(P)\right] \times\left[0\right.$, width $\left.^{2}(P)\right]$. This means that the multi-width records the dimensions of the smallest rectangle $P$ is a subset of up to affine equivalence.

## Main Theorem

Let $T\left(v_{1}, v_{2}, v_{3}\right)$ denote the triangle with vertices $v_{1}, v_{2}, v_{3}$. We allow volume zero triangles (where the vertices are colinear) but still record all three vertices.

## Main Theorem

Let $T\left(v_{1}, v_{2}, v_{3}\right)$ denote the triangle with vertices $v_{1}, v_{2}, v_{3}$. We allow volume zero triangles (where the vertices are colinear) but still record all three vertices. Let $0 \leq w_{1} \leq w_{2}$ then we define $\mathcal{T}_{w_{1}, w_{2}}$ to be the set of multi-width ( $w_{1}, w_{2}$ ) triangles up to equivalence:

$$
\mathcal{T}_{w_{1}, w_{2}}:=\left\{T=T\left(v_{1}, v_{2}, v_{3}\right): \operatorname{mwidth}(T)=\left(w_{1}, w_{2}\right)\right\} / \sim
$$

## Main Theorem

Let $T\left(v_{1}, v_{2}, v_{3}\right)$ denote the triangle with vertices $v_{1}, v_{2}, v_{3}$. We allow volume zero triangles (where the vertices are colinear) but still record all three vertices. Let $0 \leq w_{1} \leq w_{2}$ then we define $\mathcal{T}_{w_{1}, w_{2}}$ to be the set of multi-width ( $w_{1}, w_{2}$ ) triangles up to equivalence:

$$
\mathcal{T}_{w_{1}, w_{2}}:=\left\{T=T\left(v_{1}, v_{2}, v_{3}\right): \operatorname{mwidth}(T)=\left(w_{1}, w_{2}\right)\right\} / \sim
$$

## Theorem

There is a bijection from $\mathcal{S}_{w_{1}, w_{2}}$ to $\mathcal{T}_{w_{1}, w_{2}}$ given by the map taking $T$ to its affine equivalence class where we define the set $\mathcal{S}_{w_{1}, w_{2}}$ to include the following triangles when $w_{1}>0$
(1) $T\left(0,\left(w_{1}, y_{1}\right),\left(0, w_{2}\right)\right)$ where $y_{1} \in\left[0, w_{2}-y_{1} \bmod w_{1}\right]$
(2) $T\left(0,\left(w_{1}, y_{1}\right),\left(x_{2}, w_{2}\right)\right)$ where $x_{2} \in\left(0, \frac{w_{1}}{2}\right], y_{1} \in\left[0, w_{1}-x_{2}\right]$ and $y_{1} \geq x_{2}$ if $w_{1}=w_{2}$
(3) $T\left(\left(0, y_{0}\right),\left(w_{1}, 0\right),\left(x_{2}, w_{2}\right)\right)$ where $x_{2} \in\left(1, \frac{w_{1}}{2}\right), y_{0} \in\left(0, x_{2}\right)$ and $w_{1}<w_{2}$ and if $w_{1}=0$ then $\mathcal{S}_{w_{1}, w_{2}}:=\left\{T\left(0,\left(0, y_{1}\right),\left(0, w_{2}\right)\right): 0 \leq y_{1} \leq \frac{w_{2}}{2}\right\}$.


Figure: The triangles $T \in \mathcal{S}_{w_{1}, w_{2}}$ where $0 \leq w_{1} \leq w_{2} \leq 3$. These all satisfy that $\operatorname{width}^{1}(T)=\operatorname{width}_{(1,0)}(T)$ and width $^{2}(T)=\operatorname{width}_{(0,1)}(T)$. When a triangle has multiple identical vertices these are denoted by concentric circles around the first vertex.

## Corollary

The cardinality of $\mathcal{T}_{w_{1}, w_{2}}$ is given as follows

$$
\left|\mathcal{T}_{w_{1}, w_{2}}\right|= \begin{cases}\frac{w_{1}^{2}}{2}+2 & \text { when } w_{1} \text { and } w_{2} \text { even } \\ \frac{w_{1}^{2}}{2}+1 & \text { when } w_{1} \text { even and } w_{2} \text { odd } \\ \frac{w_{1}^{2}}{2}+\frac{1}{2} & \text { when } w_{1} \text { odd }\end{cases}
$$

when $0<w_{1}<w_{2}$,

$$
\left|\mathcal{T}_{w_{1}, w_{1}}\right|= \begin{cases}\frac{w_{1}^{2}}{4}+\frac{w_{1}}{2}+1 & \text { when } w_{1} \text { even } \\ \frac{w_{1}^{2}}{4}+\frac{w_{1}}{2}+\frac{1}{4} & \text { when } w_{1} \text { odd }\end{cases}
$$

when $0<w_{1}=w_{2}$ and

$$
\left|\mathcal{T}_{0, w_{2}}\right|=\left\lceil\frac{w_{2}+1}{2}\right\rceil
$$

when $0=w_{1} \leq w_{2}$.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 0 | 0 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 |
| 3 | 0 | 0 | 0 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 4 | 0 | 0 | 0 | 0 | 7 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 10 |
| 5 | 0 | 0 | 0 | 0 | 0 | 9 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 19 | 20 | 19 | 20 | 19 | 20 |

Table: The number of lattice triangles with multi-width ( $w_{1}, w_{2}$ ) up to affine equivalence.

## Corollary

The number of lattice triangles which are a subset of $[0, n]^{2}$ up to affine equivalence is equal to $\left|n Q \cap \mathbb{Z}^{4}\right|$ where

$$
Q:=\operatorname{conv}\left(\left(\frac{1}{2}, 0,0,0\right),\left(0, \frac{1}{2}, 0,0\right),\left(0,0, \frac{1}{2}, 0\right),(0,0,0,1),(-1,-1,-1,-1)\right)
$$

Furthermore, the generating function of this sequence is the Hilbert series of a degree 8 hypersurface in $\mathbb{P}(1,1,1,2,2,2)$.


## Sketch proof

Recall: If $w_{1}>0$ then $\mathcal{S}_{w_{1}, w_{2}}$ contains the triangles
(1) $T\left(0,\left(w_{1}, y_{1}\right),\left(0, w_{2}\right)\right)$ where $y_{1} \in\left[0, w_{2}-y_{1} \bmod w_{1}\right]$
(2) $T\left(0,\left(w_{1}, y_{1}\right),\left(x_{2}, w_{2}\right)\right)$ where $x_{2} \in\left(0, \frac{w_{1}}{2}\right], y_{1} \in\left[0, w_{1}-x_{2}\right]$ and $y_{1} \geq x_{2}$ if $w_{1}=w_{2}$
(3) $T\left(\left(0, y_{0}\right),\left(w_{1}, 0\right),\left(x_{2}, w_{2}\right)\right)$ where $x_{2} \in\left(1, \frac{w_{1}}{2}\right), y_{0} \in\left(0, x_{2}\right)$ and $w_{1}<w_{2}$ and if $w_{1}=0$ then $\mathcal{S}_{w_{1}, w_{2}}:=\left\{T\left(0,\left(0, y_{1}\right),\left(0, w_{2}\right)\right): 0 \leq y_{1} \leq \frac{w_{2}}{2}\right\}$.

First we can show that all the triangles in $\mathcal{S}_{w_{1}, w_{2}}$ have multi-width ( $w_{1}, w_{2}$ ). We know that their widths with respect to $(1,0)$ and $(0,1)$ are $w_{1}$ and $w_{2}$ respectively so it suffices to show that width ${ }_{u}(T) \geq w_{2}$ for all normal vectors $u=\left(u_{1}, u_{2}\right)$ linearly independent to $(1,0)$. This can be done by explicitly checking the inequalities in each case.

## Surjectivity

Next we must show that any triangle $T$ with multi-width $\left(w_{1}, w_{2}\right)$ is equivalent to one in $\mathcal{S}_{w_{1}, w_{2}}$. We may assume that $T \subseteq\left[0, w_{1}\right] \times\left[0, w_{2}\right]$ and consider the $x$-coordinates of its vertices. After a reflection we may assume these are $0, x_{1}$ and $w_{1}$ for some $x_{1} \in\left[0, \frac{w_{1}}{2}\right]$. Therefore we may assume that $T=T\left(\left(0, y_{0}\right),\left(x_{1}, y_{1}\right),\left(w_{1}, y_{2}\right)\right)$ for some $y_{0}, y_{1}, y_{2} \in\left[0, w_{2}\right]$.


Figure: We first classify the possible $x$-coordinates of the multi-width ( $w_{1}, w_{2}$ ) triangles then lift to two dimensions in every possible way.

We must have $0, w_{2} \in\left\{y_{0}, y_{1}, y_{2}\right\}$. By considering the width of $T$ with respect to $(-1,1)$ we can show that $y_{1}=w_{2}$ and so one of $y_{0}$ and $y_{1}$ is 0 . Considering the width of $T$ w.r.t. $(-1,1)$ gives the majority of the conditions on the vertices of $T$ that we wanted.
The remaining conditions on triangles in $\mathcal{S}_{w_{1}, w_{2}}$ come from removing a few equivalent triangles.

(a) When

$$
x_{1}=0 \mathrm{we}
$$

$$
\text { have } y_{0}=0
$$

$$
\text { and } y_{1}=w_{2}
$$


(b) When
$0<y_{1}<w_{2}$ the width is too small w.r.t. $(-1,1)$.

(c) When
$0<y_{1}<w_{2}$ the width is too small w.r.t. $(-1,1)$.

Figure: Some triangles we eliminate.

We must have $0, w_{2} \in\left\{y_{0}, y_{1}, y_{2}\right\}$. By considering the width of $T$ with respect to $(-1,1)$ we can show that $y_{1}=w_{2}$ and so one of $y_{0}$ and $y_{1}$ is 0 . Considering the width of $T$ w.r.t. $(-1,1)$ gives the majority of the conditions on the vertices of $T$ that we wanted.
The remaining conditions on triangles in $\mathcal{S}_{w_{1}, w_{2}}$ come from removing a few equivalent triangles.


Figure: Some triangles we eliminate.

We must have $0, w_{2} \in\left\{y_{0}, y_{1}, y_{2}\right\}$. By considering the width of $T$ with respect to $(-1,1)$ we can show that $y_{1}=w_{2}$ and so one of $y_{0}$ and $y_{1}$ is 0 . Considering the width of $T$ w.r.t. $(-1,1)$ gives the majority of the conditions on the vertices of $T$ that we wanted.
The remaining conditions on triangles in $\mathcal{S}_{w_{1}, w_{2}}$ come from removing a few equivalent triangles.

(a) When

$$
x_{1}=0 \mathrm{we}
$$

$$
\text { have } y_{0}=0
$$

$$
\text { and } y_{1}=w_{2} .
$$


(b) When
$0<y_{1}<w_{2}$ the width is too small w.r.t. $(-1,1)$.

(c) When
$0<y_{1}<w_{2}$
the width is too small w.r.t. $(-1,1)$.

Figure: Some triangles we eliminate.

We must have $0, w_{2} \in\left\{y_{0}, y_{1}, y_{2}\right\}$. By considering the width of $T$ with respect to $(-1,1)$ we can show that $y_{1}=w_{2}$ and so one of $y_{0}$ and $y_{1}$ is 0 . Considering the width of $T$ w.r.t. $(-1,1)$ gives the majority of the conditions on the vertices of $T$ that we wanted.
The remaining conditions on triangles in $\mathcal{S}_{w_{1}, w_{2}}$ come from removing a few equivalent triangles.

(a) When

$$
x_{1}=0 \mathrm{we}
$$

$$
\text { have } y_{0}=0
$$

$$
\text { and } y_{1}=w_{2} .
$$


(b) When
$0<y_{1}<w_{2}$ the width is too small w.r.t. $(-1,1)$.

(c) When
$0<y_{1}<w_{2}$
the width is too small w.r.t. $(-1,1)$.

Figure: Some triangles we eliminate.

We must have $0, w_{2} \in\left\{y_{0}, y_{1}, y_{2}\right\}$. By considering the width of $T$ with respect to $(-1,1)$ we can show that $y_{1}=w_{2}$ and so one of $y_{0}$ and $y_{1}$ is 0 . Considering the width of $T$ w.r.t. $(-1,1)$ gives the majority of the conditions on the vertices of $T$ that we wanted.
The remaining conditions on triangles in $\mathcal{S}_{w_{1}, w_{2}}$ come from removing a few equivalent triangles.

(a) When

$$
x_{1}=0 \mathrm{we}
$$

$$
\text { have } y_{0}=0
$$

$$
\text { and } y_{1}=w_{2} .
$$


(b) When
$0<y_{1}<w_{2}$ the width is too small w.r.t. $(-1,1)$.

(c) When
$0<y_{1}<w_{2}$
the width is too small w.r.t. $(-1,1)$.

Figure: Some triangles we eliminate.

Some significant repeated triangles occur in the case $w_{1}=w_{2}$. When $w_{1}=w_{2}$ the set of $x$-coordinates is not uniquely defined. If we require $x_{1}$ to be the smallest integer in $\left[0, w_{1}\right]$ such that the vertices of $T$ project down to $0, x_{1}$ and $w_{1}$ we get the additional conditions of $\mathcal{S}_{w_{1}, w_{2}}$ in the case $w_{1}=w_{2}$. This shows that $T \sim T^{\prime}$ for some $T^{\prime} \in \mathcal{S}_{w_{1}, w_{2}}$.

(a)

## Injectivity

Let $T, T^{\prime} \in \mathcal{S}_{w_{1}, w_{2}}$ such that $T \sim T^{\prime}$.

When $w_{1}<w_{2}$ it is immediate that the $x$-coordinates of $T$ and $T^{\prime}$ are identical. When $w_{1}=w_{2}$ it follows from the fact that the $x$-coordinates are as small as possible.

The fact that the $y$-coordinates are equal is then mostly a result of the volumes being equal and so $T=T^{\prime}$.

## The end

Thanks for listening!

## References



Matthias Beck, Ellinor Janssen, and Katharina Jochemko.
Lattice zonotopes of degree 2.
Beitr Algebra Geom, 2022.
( Óscar Iglesias-Valiño and Francisco Santos.
The complete classification of empty lattice 4-simplices.
Rev. Mat. Iberoam., 37(6):2399-2432, 2021.
Ralph Morrison and Ayush Kumar Tewari.
Convex lattice polygons with all lattice points visible.
Discrete Math., 344(1):Paper No. 112161, 19, 2021.

## Extension to tetrahedra

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 2 | 0 | 8 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 |
| 3 | 0 | 0 | 13 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| 4 | 0 | 0 | 0 | 22 | 35 | 36 | 35 | 36 | 35 | 36 | 35 | 36 |
| 5 | 0 | 0 | 0 | 0 | 31 | 52 | 52 | 52 | 52 | 52 | 52 | 52 |
| 6 | 0 | 0 | 0 | 0 | 0 | 44 | 75 | 76 | 75 | 76 | 75 | 76 |

Table: The number of lattice tetrahedra with multi-width $\left(1, w_{2}, w_{3}\right)$ up to affine equivalence.

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 17 | 45 | 47 | 45 | 47 | 45 | 47 | 45 | 47 | 45 | 47 |
| 3 | 0 | 87 | 178 | 175 | 178 | 175 | 178 | 175 | 178 | 175 | 178 |
| 4 | 0 | 0 | 161 | 320 | 325 | 320 | 325 | 320 | 325 | 320 |  |
| 5 | 0 | 0 | 0 | 244 |  |  |  |  |  |  |  |

Table: The number of lattice tetrahedra with multi-width ( $2, w_{2}, w_{3}$ ) up to affine equivalence.

