Classification of lattice triangles by their first two widths

Girtrude Hamm

University of Nottingham

WINGs, April 2023

1/19

Lattice Polygons

A *lattice polygon* is the convex hull of finitely many points of \mathbb{Z}^2 .

< (T) >

Lattice Polygons

A *lattice polygon* is the convex hull of finitely many points of \mathbb{Z}^2 .

We will classify polygons up to *affine equivalence*, that is, up to change of basis of \mathbb{Z}^2 and integral translation. For example

- shears
- reflections
- translations

are all affine maps.

2/19

Lattice Polygons

A *lattice polygon* is the convex hull of finitely many points of \mathbb{Z}^2 .

We will classify polygons up to *affine equivalence*, that is, up to change of basis of \mathbb{Z}^2 and integral translation. For example

- shears
- reflections
- translations

are all affine maps. Such maps preserve the area and lattice point structure of the polygons (how many lattice points in their interior/boundary etc) and are relevant to some applications.

2/19

Width

For a lattice polygon P and any normal vector $u \in (\mathbb{Z}^2)^* \cong \mathbb{Z}^2$ we say that the width of P with respect to u is

$$\mathsf{width}_u(P) := \max_{x \in P} \{u \cdot x\} - \min_{x \in P} \{u \cdot x\}.$$

The smallest width over all non-zero normal vectors u is called the *width* of P denoted width(P).

Figure: Widths of P = conv((0, 0), (5, 0), (0, 1)) with respect to different normal vectors.

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [IVnS21].
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3-dimensional lattice zonotopes of degree 2 [BJJ22].

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [IVnS21]. All but finitely many of these have width at most 2.
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3-dimensional lattice zonotopes of degree 2 [BJJ22].

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [IVnS21]. All but finitely many of these have width at most 2.
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
 All but finitely many of these have width at most 2.
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3-dimensional lattice zonotopes of degree 2 [BJJ22].

- Iglesias-Valiño and Santos (2021) completed the classification of empty 4-dimensional lattice simplices [IVnS21].
 All but finitely many of these have width at most 2.
- Morrison and Tewari (2021) classified polygons which contain a lattice point from which all other lattice points are visible [MT21].
 All but finitely many of these have width at most 2.
- Beck, Janssen and Jochemko (2022) classify the Ehrhart polynomials of lattice zonotopes of degree 2 as well as the 3-dimensional lattice zonotopes of degree 2 [BJJ22].

Apart from one exception all 3-dimensional lattice zonotopes of degree 2 have width 1.

Multi-width

For a lattice polytope $P \subset \mathbb{R}^d$ we can choose linearly independent normal vectors u_1 and u_2 such that the tuple

 $(width_{u_1}(P), width_{u_2}(P))$

is minimal with respect to lexicographic order. This tuple is called the *multi-width* of P denoted mwidth(P). We call the *i*-th entry of the multi-width the *i*-th width of P denoted width^{*i*}(P).

Figure: The multi-width of a polygon gives the dimensions of the smallest parallelogram it is a subset of.

4 6 1 1 4

Fact

A lattice polygon P is affine equivalent to a subset of $[0, \text{width}^1(P)] \times [0, \text{width}^2(P)]$. This means that the multi-width records the dimensions of the smallest rectangle P is a subset of up to affine equivalence.

Main Theorem

Let $T(v_1, v_2, v_3)$ denote the triangle with vertices v_1, v_2, v_3 . We allow volume zero triangles (where the vertices are colinear) but still record all three vertices.

Main Theorem

Let $T(v_1, v_2, v_3)$ denote the triangle with vertices v_1, v_2, v_3 . We allow volume zero triangles (where the vertices are colinear) but still record all three vertices. Let $0 \le w_1 \le w_2$ then we define T_{w_1,w_2} to be the set of multi-width (w_1, w_2) triangles up to equivalence:

 $\mathcal{T}_{w_1,w_2} := \{T = T(v_1, v_2, v_3) : \mathsf{mwidth}(T) = (w_1, w_2)\} / \sim$

Main Theorem

Let $T(v_1, v_2, v_3)$ denote the triangle with vertices v_1, v_2, v_3 . We allow volume zero triangles (where the vertices are colinear) but still record all three vertices. Let $0 \le w_1 \le w_2$ then we define T_{w_1,w_2} to be the set of multi-width (w_1, w_2) triangles up to equivalence:

$$\mathcal{T}_{w_1,w_2} := \{T = T(v_1, v_2, v_3) : \mathsf{mwidth}(T) = (w_1, w_2)\} / \sim$$

Theorem

There is a bijection from S_{w_1,w_2} to T_{w_1,w_2} given by the map taking T to its affine equivalence class where we define the set S_{w_1,w_2} to include the following triangles when $w_1 > 0$

- $T(0, (w_1, y_1), (0, w_2))$ where $y_1 \in [0, w_2 y_1 \mod w_1]$
- **2** $T(0, (w_1, y_1), (x_2, w_2))$ where $x_2 \in (0, \frac{w_1}{2}]$, $y_1 \in [0, w_1 x_2]$ and $y_1 \ge x_2$ if $w_1 = w_2$
- **o** $T((0, y_0), (w_1, 0), (x_2, w_2))$ where $x_2 \in (1, \frac{w_1}{2})$, $y_0 \in (0, x_2)$ and $w_1 < w_2$

and if $w_1 = 0$ then $S_{w_1, w_2} := \{T(0, (0, y_1), (0, w_2)) : 0 \le y_1 \le \frac{w_2}{2}\}.$

Figure: The triangles $T \in S_{w_1,w_2}$ where $0 \le w_1 \le w_2 \le 3$. These all satisfy that width¹(T) = width_(1,0)(T) and width²(T) = width_(0,1)(T). When a triangle has multiple identical vertices these are denoted by concentric circles around the first vertex.

8/19

Corollary

The cardinality of \mathcal{T}_{w_1,w_2} is given as follows

$$|\mathcal{T}_{w_1,w_2}| = \begin{cases} \frac{w_1^2}{2} + 2 & \text{when } w_1 \text{ and } w_2 \text{ even} \\ \frac{w_1}{2} + 1 & \text{when } w_1 \text{ even and } w_2 \text{ odd} \\ \frac{w_1^2}{2} + \frac{1}{2} & \text{when } w_1 \text{ odd} \end{cases}$$

when $0 < w_1 < w_2$,

$$|\mathcal{T}_{w_1,w_1}| = \begin{cases} \frac{w_1^2}{4} + \frac{w_1}{2} + 1 & \text{when } w_1 \text{ even} \\ \frac{w_1^2}{4} + \frac{w_1}{2} + \frac{1}{4} & \text{when } w_1 \text{ odd} \end{cases}$$

when $0 < w_1 = w_2$ and

$$|\mathcal{T}_{0,w_2}| = \left\lceil \frac{w_2 + 1}{2} \right\rceil$$

when $0 = w_1 \le w_2$.

イロン イ団 とく ヨン イヨン

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1	1	2	2	3	3	4	4	5	5	6	6	7
1	0	1	1	1	1	1	1	1	1	1	1	1	1
2	0	0	3	3	4	3	4	3	4	3	4	3	4
3	0	0	0	4	5	5	5	5	5	5	5	5	5
4	0	0	0	0	7	9	10	9	10	9	10	9	10
5	0	0	0	0	0	9	13	13	13	13	13	13	13
6	0	0	0	0	0	0	13	19	20	19	20	19	20

Table: The number of lattice triangles with multi-width (w_1, w_2) up to affine equivalence.

< □ > < □ > < □ > < □ > < □ >

2

Corollary

The number of lattice triangles which are a subset of $[0, n]^2$ up to affine equivalence is equal to $|nQ \cap \mathbb{Z}^4|$ where

$$Q:=\mathsf{conv}\left(\left(\frac{1}{2},0,0,0\right),\left(0,\frac{1}{2},0,0\right),\left(0,0,\frac{1}{2},0\right),(0,0,0,1),(-1,-1,-1,-1)\right)$$

Furthermore, the generating function of this sequence is the Hilbert series of a degree 8 hypersurface in $\mathbb{P}(1, 1, 1, 2, 2, 2)$.

Sketch proof

Recall: If $w_1 > 0$ then \mathcal{S}_{w_1,w_2} contains the triangles

- **3** $T(0, (w_1, y_1), (0, w_2))$ where $y_1 \in [0, w_2 y_1 \mod w_1]$
- **2** $T(0, (w_1, y_1), (x_2, w_2))$ where $x_2 \in (0, \frac{w_1}{2}]$, $y_1 \in [0, w_1 x_2]$ and $y_1 \ge x_2$ if $w_1 = w_2$
- $T((0, y_0), (w_1, 0), (x_2, w_2))$ where $x_2 \in (1, \frac{w_1}{2}), y_0 \in (0, x_2)$ and $w_1 < w_2$ and if $w_1 = 0$ then $S_{w_1, w_2} := \{T(0, (0, y_1), (0, w_2)) : 0 \le y_1 \le \frac{w_2}{2}\}.$

First we can show that all the triangles in S_{w_1,w_2} have multi-width (w_1, w_2) . We know that their widths with respect to (1,0) and (0,1) are w_1 and w_2 respectively so it suffices to show that width_u $(T) \ge w_2$ for all normal vectors $u = (u_1, u_2)$ linearly independent to (1,0). This can be done by explicitly checking the inequalities in each case.

イロト 不得 トイヨト イヨト

3

12/19

Surjectivity

Next we must show that any triangle T with multi-width (w_1, w_2) is equivalent to one in S_{w_1,w_2} . We may assume that $T \subseteq [0, w_1] \times [0, w_2]$ and consider the x-coordinates of its vertices. After a reflection we may assume these are 0, x_1 and w_1 for some $x_1 \in [0, \frac{w_1}{2}]$. Therefore we may assume that $T = T((0, y_0), (x_1, y_1), (w_1, y_2))$ for some $y_0, y_1, y_2 \in [0, w_2]$.

Figure: We first classify the possible x-coordinates of the multi-width (w_1, w_2) triangles then lift to two dimensions in every possible way.

ヘロト 不得下 イヨト イヨト

The remaining conditions on triangles in S_{w_1,w_2} come from removing a few equivalent triangles.

Figure: Some triangles we eliminate.

The remaining conditions on triangles in S_{w_1,w_2} come from removing a few equivalent triangles.

Figure: Some triangles we eliminate.

The remaining conditions on triangles in S_{w_1,w_2} come from removing a few equivalent triangles.

Figure: Some triangles we eliminate.

The remaining conditions on triangles in S_{w_1,w_2} come from removing a few equivalent triangles.

Figure: Some triangles we eliminate.

The remaining conditions on triangles in S_{w_1,w_2} come from removing a few equivalent triangles.

Figure: Some triangles we eliminate.

Some significant repeated triangles occur in the case $w_1 = w_2$.

When $w_1 = w_2$ the set of x-coordinates is not uniquely defined. If we require x_1 to be the smallest integer in $[0, w_1]$ such that the vertices of T project down to 0, x_1 and w_1 we get the additional conditions of S_{w_1,w_2} in the case $w_1 = w_2$. This shows that $T \sim T'$ for some $T' \in S_{w_1,w_2}$.

Injectivity

Let $T, T' \in \mathcal{S}_{w_1, w_2}$ such that $T \sim T'$.

When $w_1 < w_2$ it is immediate that the *x*-coordinates of *T* and *T'* are identical. When $w_1 = w_2$ it follows from the fact that the *x*-coordinates are as small as possible.

The fact that the *y*-coordinates are equal is then mostly a result of the volumes being equal and so T = T'.

Thanks for listening!

< □ > < □ > < □ > < □ > < □ >

2

References

Matthias Beck, Ellinor Janssen, and Katharina Jochemko. Lattice zonotopes of degree 2. *Beitr Algebra Geom*, 2022.

Óscar Iglesias-Valiño and Francisco Santos. The complete classification of empty lattice 4-simplices. *Rev. Mat. Iberoam.*, 37(6):2399–2432, 2021.

Ralph Morrison and Ayush Kumar Tewari. Convex lattice polygons with all lattice points visible. *Discrete Math.*, 344(1):Paper No. 112161, 19, 2021.

・ 同 ト ・ ヨ ト ・ ヨ ト

Extension to tetrahedra

	1	2	3	4	5	6	7	8	9	10	11	12
						3						
2	0	8	11	12	11	12	11	12	11	12	11	12
3	0	0	13	20	20	20	20	20	20	20	20	20
4	0	0	0	22	35	36	35	36	35	36	35	36
						52						
6	0	0	0	0	0	44	75	76	75	76	75	76

Table: The number of lattice tetrahedra with multi-width $(1, w_2, w_3)$ up to affine equivalence.

	2	3	4	5	6	7	8	9	10	11	12
2	17	45	47	45	47	45	47	45	47 178 325	45	47
3	0	87	178	175	178	175	178	175	178	175	178
4	0	0	161	320	325	320	325	320	325	320	
5	0	0	0	244							

Table: The number of lattice tetrahedra with multi-width $(2, w_2, w_3)$ up to affine equivalence.

19/19